Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstruction Guarantee Analysis of Binary Measurement Matrices Based on Girth (1301.4926v2)

Published 21 Jan 2013 in cs.IT and math.IT

Abstract: Binary 0-1 measurement matrices, especially those from coding theory, were introduced to compressed sensing (CS) recently. Good measurement matrices with preferred properties, e.g., the restricted isometry property (RIP) and nullspace property (NSP), have no known general ways to be efficiently checked. Khajehnejad \emph{et al.} made use of \emph{girth} to certify the good performances of sparse binary measurement matrices. In this paper, we examine the performance of binary measurement matrices with uniform column weight and arbitrary girth under basis pursuit. Explicit sufficient conditions of exact reconstruction %only including $\gamma$ and $g$ are obtained, which improve the previous results derived from RIP for any girth $g$ and results from NSP when $g/2$ is odd. Moreover, we derive explicit $l_1/l_1$, $l_2/l_1$ and $l_\infty/l_1$ sparse approximation guarantees. These results further show that large girth has positive impacts on the performance of binary measurement matrices under basis pursuit, and the binary parity-check matrices of good LDPC codes are important candidates of measurement matrices.

Citations (20)

Summary

We haven't generated a summary for this paper yet.