Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Update-Efficient Error-Correcting Product-Matrix Codes (1301.4620v2)

Published 20 Jan 2013 in cs.IT and math.IT

Abstract: Regenerating codes provide an efficient way to recover data at failed nodes in distributed storage systems. It has been shown that regenerating codes can be designed to minimize the per-node storage (called MSR) or minimize the communication overhead for regeneration (called MBR). In this work, we propose new encoding schemes for $[n,d]$ error-correcting MSR and MBR codes that generalize our earlier work on error-correcting regenerating codes. We show that by choosing a suitable diagonal matrix, any generator matrix of the $[n,\alpha]$ Reed-Solomon (RS) code can be integrated into the encoding matrix. Hence, MSR codes with the least update complexity can be found. By using the coefficients of generator polynomials of $[n,k]$ and $[n,d]$ RS codes, we present a least-update-complexity encoding scheme for MBR codes. A decoding scheme is proposed that utilizes the $[n,\alpha]$ RS code to perform data reconstruction for MSR codes. The proposed decoding scheme has better error correction capability and incurs the least number of node accesses when errors are present. A new decoding scheme is also proposed for MBR codes that can correct more error-patterns.

Citations (2)

Summary

We haven't generated a summary for this paper yet.