Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

View-based propagation of decomposable constraints (1301.4272v1)

Published 17 Jan 2013 in cs.AI

Abstract: Constraints that may be obtained by composition from simpler constraints are present, in some way or another, in almost every constraint program. The decomposition of such constraints is a standard technique for obtaining an adequate propagation algorithm from a combination of propagators designed for simpler constraints. The decomposition approach is appealing in several ways. Firstly because creating a specific propagator for every constraint is clearly infeasible since the number of constraints is infinite. Secondly, because designing a propagation algorithm for complex constraints can be very challenging. Finally, reusing existing propagators allows to reduce the size of code to be developed and maintained. Traditionally, constraint solvers automatically decompose constraints into simpler ones using additional auxiliary variables and propagators, or expect the users to perform such decomposition themselves, eventually leading to the same propagation model. In this paper we explore views, an alternative way to create efficient propagators for such constraints in a modular, simple and correct way, which avoids the introduction of auxiliary variables and propagators.

Citations (2)

Summary

We haven't generated a summary for this paper yet.