Papers
Topics
Authors
Recent
Search
2000 character limit reached

Fast Planning in Stochastic Games

Published 16 Jan 2013 in cs.GT and cs.AI | (1301.3867v1)

Abstract: Stochastic games generalize Markov decision processes (MDPs) to a multiagent setting by allowing the state transitions to depend jointly on all player actions, and having rewards determined by multiplayer matrix games at each state. We consider the problem of computing Nash equilibria in stochastic games, the analogue of planning in MDPs. We begin by providing a generalization of finite-horizon value iteration that computes a Nash strategy for each player in generalsum stochastic games. The algorithm takes an arbitrary Nash selection function as input, which allows the translation of local choices between multiple Nash equilibria into the selection of a single global Nash equilibrium. Our main technical result is an algorithm for computing near-Nash equilibria in large or infinite state spaces. This algorithm builds on our finite-horizon value iteration algorithm, and adapts the sparse sampling methods of Kearns, Mansour and Ng (1999) to stochastic games. We conclude by descrbing a counterexample showing that infinite-horizon discounted value iteration, which was shown by shaplely to converge in the zero-sum case (a result we give extend slightly here), does not converge in the general-sum case.

Citations (51)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.