Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Planning in Stochastic Games (1301.3867v1)

Published 16 Jan 2013 in cs.GT and cs.AI

Abstract: Stochastic games generalize Markov decision processes (MDPs) to a multiagent setting by allowing the state transitions to depend jointly on all player actions, and having rewards determined by multiplayer matrix games at each state. We consider the problem of computing Nash equilibria in stochastic games, the analogue of planning in MDPs. We begin by providing a generalization of finite-horizon value iteration that computes a Nash strategy for each player in generalsum stochastic games. The algorithm takes an arbitrary Nash selection function as input, which allows the translation of local choices between multiple Nash equilibria into the selection of a single global Nash equilibrium. Our main technical result is an algorithm for computing near-Nash equilibria in large or infinite state spaces. This algorithm builds on our finite-horizon value iteration algorithm, and adapts the sparse sampling methods of Kearns, Mansour and Ng (1999) to stochastic games. We conclude by descrbing a counterexample showing that infinite-horizon discounted value iteration, which was shown by shaplely to converge in the zero-sum case (a result we give extend slightly here), does not converge in the general-sum case.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Michael Kearns (65 papers)
  2. Yishay Mansour (158 papers)
  3. Satinder Singh (80 papers)
Citations (51)

Summary

We haven't generated a summary for this paper yet.