Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mix-nets: Factored Mixtures of Gaussians in Bayesian Networks With Mixed Continuous And Discrete Variables (1301.3852v1)

Published 16 Jan 2013 in cs.LG, cs.AI, and stat.ML

Abstract: Recently developed techniques have made it possible to quickly learn accurate probability density functions from data in low-dimensional continuous space. In particular, mixtures of Gaussians can be fitted to data very quickly using an accelerated EM algorithm that employs multiresolution kd-trees (Moore, 1999). In this paper, we propose a kind of Bayesian networks in which low-dimensional mixtures of Gaussians over different subsets of the domain's variables are combined into a coherent joint probability model over the entire domain. The network is also capable of modeling complex dependencies between discrete variables and continuous variables without requiring discretization of the continuous variables. We present efficient heuristic algorithms for automatically learning these networks from data, and perform comparative experiments illustrated how well these networks model real scientific data and synthetic data. We also briefly discuss some possible improvements to the networks, as well as possible applications.

Citations (31)

Summary

We haven't generated a summary for this paper yet.