Papers
Topics
Authors
Recent
Search
2000 character limit reached

Separation Properties of Sets of Probability Measures

Published 16 Jan 2013 in cs.AI | (1301.3845v1)

Abstract: This paper analyzes independence concepts for sets of probability measures associated with directed acyclic graphs. The paper shows that epistemic independence and the standard Markov condition violate desirable separation properties. The adoption of a contraction condition leads to d-separation but still fails to guarantee a belief separation property. To overcome this unsatisfactory situation, a strong Markov condition is proposed, based on epistemic independence. The main result is that the strong Markov condition leads to strong independence and does enforce separation properties; this result implies that (1) separation properties of Bayesian networks do extend to epistemic independence and sets of probability measures, and (2) strong independence has a clear justification based on epistemic independence and the strong Markov condition.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.