Papers
Topics
Authors
Recent
2000 character limit reached

Depth-graded motivic multiple zeta values

Published 14 Jan 2013 in math.NT | (1301.3053v2)

Abstract: We study the depth filtration on multiple zeta values, the motivic Galois group of mixed Tate motives over $\mathbb{Z}$ and the Grothendieck-Teichm\"uller group, and its relation to modular forms. Using period polynomials for cusp forms for $\mathrm{SL}_2(\mathbb{Z})$, we construct an explicit Lie algebra of solutions to the linearized double shuffle equations, which gives a conjectural description of all identities between multiple zeta values modulo $\zeta(2)$ and modulo lower depth. We formulate a single conjecture about the homology of this Lie algebra which implies conjectures due to Broadhurst-Kreimer, Racinet, Zagier and Drinfeld on the structure of multiple zeta values and on the Grothendieck-Teichm\"uller Lie algebra.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.