Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Optimization under Multi-band Uncertainty - Part I: Theory (1301.2734v3)

Published 12 Jan 2013 in math.OC, cs.DS, and math.NA

Abstract: The classical single-band uncertainty model introduced by Bertsimas and Sim has represented a breakthrough in the development of tractable robust counterparts of Linear Programs. However, adopting a single deviation band may be too limitative in practice: in many real-world problems, observed deviations indeed present asymmetric distributions over asymmetric ranges, so that getting a higher modeling resolution by partitioning the band into multiple sub-bands is advisable. The critical aim of our work is to close the knowledge gap on the adoption of multi-band uncertainty in Robust Optimization: a general definition and intensive theoretical study of a multi-band model are actually still missing. Our new developments have been also strongly inspired and encouraged by our industrial partners, interested in getting a better modeling of arbitrary shaped distributions, built on historical data about the uncertainty affecting the considered real-world problems.

Citations (23)

Summary

We haven't generated a summary for this paper yet.