Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Markov Chain Monte Carlo using Tree-Based Priors on Model Structure (1301.2254v1)

Published 10 Jan 2013 in cs.AI

Abstract: We present a general framework for defining priors on model structure and sampling from the posterior using the Metropolis-Hastings algorithm. The key idea is that structure priors are defined via a probability tree and that the proposal mechanism for the Metropolis-Hastings algorithm operates by traversing this tree, thereby defining a cheaply computable acceptance probability. We have applied this approach to Bayesian net structure learning using a number of priors and tree traversal strategies. Our results show that these must be chosen appropriately for this approach to be successful.

Citations (24)

Summary

We haven't generated a summary for this paper yet.