Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limit laws of the coefficients of polynomials with only unit roots (1301.2021v1)

Published 10 Jan 2013 in math.PR and math.CO

Abstract: We consider sequences of random variables whose probability generating functions are polynomials all of whose roots lie on the unit circle. The distribution of such random variables has only been sporadically studied in the literature. We show that the random variables are asymptotically normally distributed if and only if the fourth normalized (by the standard deviation) central moment tends to 3, in contrast to the common scenario for polynomials with only real roots for which a central limit theorem holds if and only if the variance goes unbounded. We also derive a representation theorem for all possible limit laws and apply our results to many concrete examples in the literature, ranging from combinatorial structures to numerical analysis, and from probability to analysis of algorithms.

Summary

We haven't generated a summary for this paper yet.