Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A hierarchical version of the de Finetti and Aldous-Hoover representations (1301.1259v4)

Published 7 Jan 2013 in math.PR

Abstract: We consider random arrays indexed by the leaves of an infinitary rooted tree of finite depth, with the distribution invariant under the rearrangements that preserve the tree structure. We call such arrays hierarchically exchangeable and prove that they satisfy an analogue of de Finetti's theorem. We also prove a more general result for arrays indexed by several trees, which includes a hierarchical version of the Aldous-Hoover representation.

Summary

We haven't generated a summary for this paper yet.