Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inductive Policy Selection for First-Order MDPs (1301.0614v1)

Published 12 Dec 2012 in cs.AI

Abstract: We select policies for large Markov Decision Processes (MDPs) with compact first-order representations. We find policies that generalize well as the number of objects in the domain grows, potentially without bound. Existing dynamic-programming approaches based on flat, propositional, or first-order representations either are impractical here or do not naturally scale as the number of objects grows without bound. We implement and evaluate an alternative approach that induces first-order policies using training data constructed by solving small problem instances using PGraphplan (Blum & Langford, 1999). Our policies are represented as ensembles of decision lists, using a taxonomic concept language. This approach extends the work of Martin and Geffner (2000) to stochastic domains, ensemble learning, and a wider variety of problems. Empirically, we find "good" policies for several stochastic first-order MDPs that are beyond the scope of previous approaches. We also discuss the application of this work to the relational reinforcement-learning problem.

Citations (94)

Summary

We haven't generated a summary for this paper yet.