Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decision Principles to justify Carnap's Updating Method and to Suggest Corrections of Probability Judgments (Invited Talks) (1301.0611v1)

Published 12 Dec 2012 in cs.AI

Abstract: This paper uses decision-theoretic principles to obtain new insights into the assessment and updating of probabilities. First, a new foundation of Bayesianism is given. It does not require infinite atomless uncertainties as did Savage s classical result, AND can therefore be applied TO ANY finite Bayesian network.It neither requires linear utility AS did de Finetti s classical result, AND r ntherefore allows FOR the empirically AND normatively desirable risk r naversion.Finally, BY identifying AND fixing utility IN an elementary r nmanner, our result can readily be applied TO identify methods OF r nprobability updating.Thus, a decision - theoretic foundation IS given r nto the computationally efficient method OF inductive reasoning r ndeveloped BY Rudolf Carnap.Finally, recent empirical findings ON r nprobability assessments are discussed.It leads TO suggestions FOR r ncorrecting biases IN probability assessments, AND FOR an alternative r nto the Dempster - Shafer belief functions that avoids the reduction TO r ndegeneracy after multiple updatings.r n

Citations (4)

Summary

We haven't generated a summary for this paper yet.