Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Method for Finding Structured Sparse Solutions to Non-negative Least Squares Problems with Applications (1301.0413v1)

Published 3 Jan 2013 in stat.ML, stat.AP, stat.CO, and stat.ME

Abstract: Demixing problems in many areas such as hyperspectral imaging and differential optical absorption spectroscopy (DOAS) often require finding sparse nonnegative linear combinations of dictionary elements that match observed data. We show how aspects of these problems, such as misalignment of DOAS references and uncertainty in hyperspectral endmembers, can be modeled by expanding the dictionary with grouped elements and imposing a structured sparsity assumption that the combinations within each group should be sparse or even 1-sparse. If the dictionary is highly coherent, it is difficult to obtain good solutions using convex or greedy methods, such as non-negative least squares (NNLS) or orthogonal matching pursuit. We use penalties related to the Hoyer measure, which is the ratio of the $l_1$ and $l_2$ norms, as sparsity penalties to be added to the objective in NNLS-type models. For solving the resulting nonconvex models, we propose a scaled gradient projection algorithm that requires solving a sequence of strongly convex quadratic programs. We discuss its close connections to convex splitting methods and difference of convex programming. We also present promising numerical results for example DOAS analysis and hyperspectral demixing problems.

Citations (138)

Summary

We haven't generated a summary for this paper yet.