Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classifier Fusion Method to Recognize Handwritten Kannada Numerals (1301.0167v1)

Published 2 Jan 2013 in cs.CV

Abstract: Optical Character Recognition (OCR) is one of the important fields in image processing and pattern recognition domain. Handwritten character recognition has always been a challenging task. Only a little work can be traced towards the recognition of handwritten characters for the south Indian languages. Kannada is one such south Indian language which is also one of the official language of India. Accurate recognition of Kannada characters is a challenging task because of the high degree of similarity between the characters. Hence, good quality features are to be extracted and better classifiers are needed to improve the accuracy of the OCR for Kannada characters. This paper explores the effectiveness of feature extraction method like run length count (RLC) and directional chain code (DCC) for the recognition of handwritten Kannada numerals. In this paper, a classifier fusion method is implemented to improve the recognition rate. For the classifier fusion, we have considered K-nearest neighbour (KNN) and Linear classifier (LC). The novelty of this method is to achieve better accuracy with few features using classifier fusion approach. Proposed method achieves an average recognition rate of 96%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. H. R. Mamatha (1 paper)
  2. Murthy K. Srikanta (1 paper)
  3. S. Karthik (2 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.