Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training a Functional Link Neural Network Using an Artificial Bee Colony for Solving a Classification Problems (1212.6922v1)

Published 31 Dec 2012 in cs.NE and cs.LG

Abstract: Artificial Neural Networks have emerged as an important tool for classification and have been widely used to classify a non-linear separable pattern. The most popular artificial neural networks model is a Multilayer Perceptron (MLP) as it is able to perform classification task with significant success. However due to the complexity of MLP structure and also problems such as local minima trapping, over fitting and weight interference have made neural network training difficult. Thus, the easy way to avoid these problems is to remove the hidden layers. This paper presents the ability of Functional Link Neural Network (FLNN) to overcome the complexity structure of MLP by using single layer architecture and propose an Artificial Bee Colony (ABC) optimization for training the FLNN. The proposed technique is expected to provide better learning scheme for a classifier in order to get more accurate classification result

Citations (26)

Summary

We haven't generated a summary for this paper yet.