Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximizing a Nonnegative, Monotone, Submodular Function Constrained to Matchings (1212.6846v2)

Published 31 Dec 2012 in cs.DS, cs.AI, cs.CC, cs.LG, and stat.ML

Abstract: Submodular functions have many applications. Matchings have many applications. The bitext word alignment problem can be modeled as the problem of maximizing a nonnegative, monotone, submodular function constrained to matchings in a complete bipartite graph where each vertex corresponds to a word in the two input sentences and each edge represents a potential word-to-word translation. We propose a more general problem of maximizing a nonnegative, monotone, submodular function defined on the edge set of a complete graph constrained to matchings; we call this problem the CSM-Matching problem. CSM-Matching also generalizes the maximum-weight matching problem, which has a polynomial-time algorithm; however, we show that it is NP-hard to approximate CSM-Matching within a factor of e/(e-1) by reducing the max k-cover problem to it. Our main result is a simple, greedy, 3-approximation algorithm for CSM-Matching. Then we reduce CSM-Matching to maximizing a nonnegative, monotone, submodular function over two matroids, i.e., CSM-2-Matroids. CSM-2-Matroids has a (2+epsilon)-approximation algorithm - called LSV2. We show that we can find a (4+epsilon)-approximate solution to CSM-Matching using LSV2. We extend this approach to similar problems.

Summary

We haven't generated a summary for this paper yet.