Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Super rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations (1212.6619v2)

Published 29 Dec 2012 in physics.flu-dyn and physics.geo-ph

Abstract: The rogue wave solutions (rational multi-breathers) of the nonlinear Schrodinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation (MNLS) also known as the Dysthe equation. This numerical modelling allowed us to directly compare simulations with recent results of laboratory measurements in \cite{Chabchoub2012c}. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.

Summary

We haven't generated a summary for this paper yet.