Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating strong measurement noise in data series with simulated annealing method (1212.6356v1)

Published 27 Dec 2012 in physics.data-an

Abstract: Many stochastic time series can be described by a Langevin equation composed of a deterministic and a stochastic dynamical part. Such a stochastic process can be reconstructed by means of a recently introduced nonparametric method, thus increasing the predictability, i.e. knowledge of the macroscopic drift and the microscopic diffusion functions. If the measurement of a stochastic process is affected by additional strong measurement noise, the reconstruction process cannot be applied. Here, we present a method for the reconstruction of stochastic processes in the presence of strong measurement noise, based on a suitably parametrized ansatz. At the core of the process is the minimization of the functional distance between terms containing the conditional moments taken from measurement data, and the corresponding ansatz functions. It is shown that a minimization of the distance by means of a simulated annealing procedure yields better results than a previously used Levenberg-Marquardt algorithm, which permits a rapid and reliable reconstruction of the stochastic process.

Summary

We haven't generated a summary for this paper yet.