Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constructing positive maps from block matrices (1212.5851v2)

Published 24 Dec 2012 in math-ph, math.MP, math.OA, and quant-ph

Abstract: Positive maps are useful for detecting entanglement in quantum information theory. Any entangled state can be detected by some positive map. In this paper, the relation between positive block matrices and completely positive trace-preserving maps is characterized. Consequently, a new method for constructing decomposable maps from positive block matrices is derived. In addition, a method for constructing positive but not completely positive maps from Hermitian block matrices is also obtained.

Summary

We haven't generated a summary for this paper yet.