Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Riesz transform, rectifiability, and removability for Lipschitz harmonic functions (1212.5431v2)

Published 21 Dec 2012 in math.CA and math.AP

Abstract: We show that, given a set $E\subset \mathbb R{n+1}$ with finite $n$-Hausdorff measure $Hn$, if the $n$-dimensional Riesz transform $$R_{Hn|E} f(x) = \int_{E} \frac{x-y}{|x-y|{n+1}} f(y) dHn(y)$$ is bounded in $L2(Hn|E)$, then $E$ is $n$-rectifiable. From this result we deduce that a compact set $E\subset\mathbb R{n+1}$ with $Hn(E)<\infty$ is removable for Lipschitz harmonic functions if and only if it is purely $n$-unrectifiable, thus proving the analog of Vitushkin's conjecture in higher dimensions.

Summary

We haven't generated a summary for this paper yet.