Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On properties of principal elements of Frobenius Lie algebras (1212.5380v2)

Published 21 Dec 2012 in math.DG, math-ph, math.AC, math.MP, and math.SG

Abstract: We investigate the properties of principal elements of Frobenius Lie algebras, following the work of M. Gerstenhaber and A. Giaquinto. We prove that any Lie algebra with a left symmetric algebra structure can be embedded, in a natural way, as a subalgebra of some sl(m,K), for K= R or C. Hence, the work of Belavin and Drinfeld on solutions of the Classical Yang-Baxter Equation on simple Lie algebras, applied to the particular case of sl(m, K) alone, paves the way to the complete classification of Frobenius and more generally quasi-Frobenius Lie algebras. We prove that, if a Frobenius Lie algebra has the property that every derivation is an inner derivation, then every principal element is semisimple, at least for K=C. As an important case, we prove that in the Lie algebra of the group of affine motions of the Euclidean space of finite dimension, every derivation is inner. We also bring a class of examples of Frobenius Lie algebras, that hence are subalgebras of sl(m, K), but yet have nonsemisimple principal elements as well as some with semisimple principal elements having nonrational eigenvalues, where K=R or C.

Summary

We haven't generated a summary for this paper yet.