Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantized Network Coding for Correlated Sources (1212.5288v1)

Published 20 Dec 2012 in cs.IT and math.IT

Abstract: Non-adaptive joint source network coding of correlated sources is discussed in this paper. By studying the information flow in the network, we propose quantized network coding as an alternative for packet forwarding. This technique has both network coding and distributed source coding advantages, simultaneously. Quantized network coding is a combination of random linear network coding in the (infinite) field of real numbers and quantization to cope with the limited capacity of links. With the aid of the results in the literature of compressed sensing, we discuss theoretical and practical feasibility of quantized network coding in lossless networks. We show that, due to the nature of the field it operates on, quantized network coding can provide good quality decoding at a sink node with the reception of a reduced number of packets. Specifically, we discuss the required conditions on local network coding coefficients, by using restricted isometry property and suggest a design, which yields in appropriate linear measurements. Finally, our simulation results show the achieved gain in terms of delivery delay, compared to conventional routing based packet forwarding.

Citations (11)

Summary

We haven't generated a summary for this paper yet.