Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

More on the Power of Randomized Matrix Computations (1212.4560v2)

Published 19 Dec 2012 in math.NA, cs.NA, and math.PR

Abstract: A random matrix is likely to be well conditioned, and motivated by this well known property we employ random matrix multipliers to advance some fundamental matrix computations. This includes numerical stabilization of Gaussian elimination with no pivoting as well as block Gaussian elimination, approximation of the leading and trailing singular spaces of an ill conditioned matrix, associated with its largest and smallest singular values, respectively, and approximation of this matrix by low-rank matrices, with further extensions to computing numerical ranks and the approximation of tensor decomposition. We formally support the efficiency of the proposed techniques where we employ Gaussian random multipliers, but our extensive tests have consistently produced the same outcome where instead we used sparse and structured random multipliers, defined by much fewer random parameters compared to the number of their entries.

Summary

We haven't generated a summary for this paper yet.