Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity
Abstract: We study a one-dimensional parabolic PDE with degenerate diffusion and non-Lipschitz nonlinearity involving the derivative. This evolution equation arises when searching radially symmetric solutions of a chemotaxis model of Patlak-Keller-Segel type. We prove its local in time wellposedness in some appropriate space, a blow-up alternative, regularity results and give an idea of the shape of solutions. A transformed and an approximate problem naturally appear in the way of the proof and are also crucial in [22] in order to study the global behaviour of solutions of the equation for a critical parameter, more precisely to show the existence of a critical mass.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.