Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity (1212.2807v2)

Published 12 Dec 2012 in math.AP

Abstract: We study a one-dimensional parabolic PDE with degenerate diffusion and non-Lipschitz nonlinearity involving the derivative. This evolution equation arises when searching radially symmetric solutions of a chemotaxis model of Patlak-Keller-Segel type. We prove its local in time wellposedness in some appropriate space, a blow-up alternative, regularity results and give an idea of the shape of solutions. A transformed and an approximate problem naturally appear in the way of the proof and are also crucial in [22] in order to study the global behaviour of solutions of the equation for a critical parameter, more precisely to show the existence of a critical mass.

Summary

We haven't generated a summary for this paper yet.