2000 character limit reached
Stochastic analysis for obtuse random walks (1212.2324v2)
Published 11 Dec 2012 in math.PR
Abstract: We present a construction of the basic operators of stochastic analysis (gradient and divergence) for a class of discrete-time normal martingales called obtuse random walks. The approach is based on the chaos representation property and discrete multiple stochastic integrals. We show that these operators satisfy similar identities as in the case of the Bernoulli randoms walks. We prove a Clark-Ocone-type predictable representation formula, obtain two covariance identities and derive a deviation inequality. We close the exposition by an application to option hedging in discrete time.