Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic analysis for obtuse random walks (1212.2324v2)

Published 11 Dec 2012 in math.PR

Abstract: We present a construction of the basic operators of stochastic analysis (gradient and divergence) for a class of discrete-time normal martingales called obtuse random walks. The approach is based on the chaos representation property and discrete multiple stochastic integrals. We show that these operators satisfy similar identities as in the case of the Bernoulli randoms walks. We prove a Clark-Ocone-type predictable representation formula, obtain two covariance identities and derive a deviation inequality. We close the exposition by an application to option hedging in discrete time.

Summary

We haven't generated a summary for this paper yet.