Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A zero-sum game between a singular stochastic controller and a discretionary stopper (1212.2074v2)

Published 10 Dec 2012 in math.PR and math.OC

Abstract: We consider a stochastic differential equation that is controlled by means of an additive finite-variation process. A singular stochastic controller, who is a minimizer, determines this finite-variation process, while a discretionary stopper, who is a maximizer, chooses a stopping time at which the game terminates. We consider two closely related games that are differentiated by whether the controller or the stopper has a first-move advantage. The games' performance indices involve a running payoff as well as a terminal payoff and penalize control effort expenditure. We derive a set of variational inequalities that can fully characterize the games' value functions as well as yield Markovian optimal strategies. In particular, we derive the explicit solutions to two special cases and we show that, in general, the games' value functions fail to be $C1$. The nonuniqueness of the optimal strategy is an interesting feature of the game in which the controller has the first-move advantage.

Summary

We haven't generated a summary for this paper yet.