Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trends in Combating Image Spam E-mails (1212.1763v1)

Published 8 Dec 2012 in cs.CR

Abstract: With the rapid adoption of Internet as an easy way to communicate, the amount of unsolicited e-mails, known as spam e-mails, has been growing rapidly. The major problem of spam e-mails is the loss of productivity and a drain on IT resources. Today, we receive spam more rapidly than the legitimate e-mails. Initially, spam e-mails contained only textual messages which were easily detected by the text-based spam filters. To evade such detection, spammers came up with a new sophisticated technique called image spam. Image spam consists in embedding the advertisement text in images rather than in the body of the e-mail, yet the image contents are not detected by most spam filters. In this paper, we examine the motivations and the challenges in image spam filtering research, and we review the recent trends in combating image spam e-mails. The review indicates that spamming is a business model and spammers are becoming more sophisticated in their approach to adapt to all challenges, and hence, defeating the conventional spam filtering technologies. Therefore, image spam detection techniques should be scalable and adaptable to meet the future tactics of the spammers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (4)

Summary

We haven't generated a summary for this paper yet.