Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Homomorphisms for Quantum Players (1212.1724v2)

Published 7 Dec 2012 in quant-ph and math.CO

Abstract: A homomorphism from a graph $X$ to a graph $Y$ is an adjacency preserving mapping $f:V(X) \rightarrow V(Y)$. We consider a nonlocal game in which Alice and Bob are trying to convince a verifier with certainty that a graph $X$ admits a homomorphism to $Y$. This is a generalization of the well-studied graph coloring game. Via systematic study of quantum homomorphisms we prove new results for graph coloring. Most importantly, we show that the Lov\'{a}sz theta number of the complement lower bounds the quantum chromatic number, which itself is not known to be computable. We also show that some of our newly introduced graph parameters, namely quantum independence and clique numbers, can differ from their classical counterparts while others, namely quantum odd girth, cannot. Finally, we show that quantum homomorphisms closely relate to zero-error channel capacity. In particular, we use quantum homomorphisms to construct graphs for which entanglement-assistance increases their one-shot zero-error capacity.

Summary

We haven't generated a summary for this paper yet.