Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Order preserving and order reversing operators on the class of convex functions in Banach spaces (1212.1120v4)

Published 4 Dec 2012 in math.FA and math.OC

Abstract: A remarkable result by S. Artstein-Avidan and V. Milman states that, up to pre-composition with affine operators, addition of affine functionals, and multiplication by positive scalars, the only fully order preserving mapping acting on the class of lower semicontinuous proper convex functions defined on $\mathbb{R}n$ is the identity operator, and the only fully order reversing one acting on the same set is the Fenchel conjugation. Here fully order preserving (reversing) mappings are understood to be those which preserve (reverse) the pointwise order among convex functions, are invertible, and such that their inverses also preserve (reverse) such order. In this paper we establish a suitable extension of these results to order preserving and order reversing operators acting on the class of lower semicontinous proper convex functions defined on arbitrary infinite dimensional Banach spaces.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.