Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network delay-aware load balancing in selfish and cooperative distributed systems (1212.0421v1)

Published 3 Dec 2012 in cs.DC

Abstract: We consider a request processing system composed of organizations and their servers connected by the Internet. The latency a user observes is a sum of communication delays and the time needed to handle the request on a server. The handling time depends on the server congestion, i.e. the total number of requests a server must handle. We analyze the problem of balancing the load in a network of servers in order to minimize the total observed latency. We consider both cooperative and selfish organizations (each organization aiming to minimize the latency of the locally-produced requests). The problem can be generalized to the task scheduling in a distributed cloud; or to content delivery in an organizationally-distributed CDNs. In a cooperative network, we show that the problem is polynomially solvable. We also present a distributed algorithm iteratively balancing the load. We show how to estimate the distance between the current solution and the optimum based on the amount of load exchanged by the algorithm. During the experimental evaluation, we show that the distributed algorithm is efficient, therefore it can be used in networks with dynamically changing loads. In a network of selfish organizations, we prove that the price of anarchy (the worst-case loss of performance due to selfishness) is low when the network is homogeneous and the servers are loaded (the request handling time is high compared to the communication delay). After relaxing these assumptions, we assess the loss of performance caused by the selfishness experimentally, showing that it remains low. Our results indicate that a network of servers handling requests can be efficiently managed by a distributed algorithm. Additionally, even if the network is organizationally distributed, with individual organizations optimizing performance of their requests, the network remains efficient.

Citations (4)

Summary

We haven't generated a summary for this paper yet.