Papers
Topics
Authors
Recent
Search
2000 character limit reached

Tannaka-Krein duality for compact quantum homogeneous spaces. I. General theory

Published 28 Nov 2012 in math.OA and math.QA | (1211.6552v3)

Abstract: An ergodic action of a compact quantum group G on an operator algebra A can be interpreted as a quantum homogeneous space for G. Such an action gives rise to the category of finite equivariant Hilbert modules over A, which has a module structure over the tensor category Rep(G) of finite dimensional representations of G. We show that there is a one-to-one correspondence between the quantum G-homogeneous spaces up to equivariant Morita equivalence, and indecomposable module C*-categories over Rep(G) up to natural equivalence. This gives a global approach to the duality theory for ergodic actions as developed by C. Pinzari and J. Roberts.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.