Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Remarks on some quasilinear equations with gradient terms and measure data (1211.6542v2)

Published 28 Nov 2012 in math.AP

Abstract: Let $\Omega \subset \mathbb{R}{N}$ be a smooth bounded domain, $H$ a Caratheodory function defined in $\Omega \times \mathbb{R\times R}{N},$ and $\mu $ a bounded Radon measure in $\Omega .$ We study the problem% \begin{equation*} -\Delta_{p}u+H(x,u,\nabla u)=\mu \quad \text{in}\Omega,\qquad u=0\quad \text{on}\partial \Omega, \end{equation*} where $\Delta_{p}$ is the $p$-Laplacian ($p>1$)$,$ and we emphasize the case $H(x,u,\nabla u)=\pm \left| \nabla u\right| {q}$ ($q>0$). We obtain an existence result under subcritical growth assumptions on $H,$ we give necessary conditions of existence in terms of capacity properties, and we prove removability results of eventual singularities. In the supercritical case, when $\mu \geqq 0$ and $H$ is an absorption term, i.e. $% H\geqq 0,$ we give two sufficient conditions for existence of a nonnegative solution.

Summary

We haven't generated a summary for this paper yet.