Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Small H-coloring problems for bounded degree digraphs (1211.6466v1)

Published 27 Nov 2012 in math.CO and cs.DM

Abstract: An NP-complete coloring or homomorphism problem may become polynomial time solvable when restricted to graphs with degrees bounded by a small number, but remain NP-complete if the bound is higher. For instance, 3-colorability of graphs with degrees bounded by 3 can be decided by Brooks' theorem, while for graphs with degrees bounded by 4, the 3-colorability problem is NP-complete. We investigate an analogous phenomenon for digraphs, focusing on the three smallest digraphs H with NP-complete H-colorability problems. It turns out that in all three cases the H-coloring problem is polynomial time solvable for digraphs with degree bounds $\Delta{+} \leq 1$, $\Delta{-} \leq 2$ (or $\Delta{+} \leq 2$, $\Delta{-} \leq 1$). On the other hand with degree bounds $\Delta{+} \leq 2$, $\Delta{-} \leq 2$, all three problems are again NP-complete. A conjecture proposed for graphs H by Feder, Hell and Huang states that any variant of the $H$-coloring problem which is NP-complete without degree constraints is also NP-complete with degree constraints, provided the degree bounds are high enough. Our study is the first confirmation that the conjecture may also apply to digraphs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.