2000 character limit reached
Precise asymptotics for large deviations of integral forms (1211.5610v1)
Published 23 Nov 2012 in math.PR
Abstract: For suitable families of locally infinitely divisible Markov processes ${\xi{{\epsilon}}t}{0\leq t\leq T}$ with frequent small jumps depending on a small parameter $\epsilon>0,$ precise asymptotics for large deviations of integral forms $\mathbb{E}{\epsilon}[\exp{{\epsilon}{-1}F(\xi{\epsilon})}]$ are proved for smooth functionals $F.$ The main ingredient of the proof in this paper is a recent result regarding the asymptotic expansions of the expectations $\mathbb{E}{\epsilon}[G(\xi{\epsilon})}]$ for smooth $G.$ Several connections between these large deviation asymptotics and partial integro-differential equations are included as well.