Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing the rank of a matroid (1211.4853v2)

Published 20 Nov 2012 in cs.DS and cs.DM

Abstract: We consider the rank reduction problem for matroids: Given a matroid M and an integer k, find a minimum size subset of elements of M whose removal reduces the rank of M by at least k. When M is a graphical matroid this problem is the minimum k-cut problem, which admits a 2-approximation algorithm. In this paper we show that the rank reduction problem for transversal matroids is essentially at least as hard to approximate as the densest k-subgraph problem. We also prove that, while the problem is easily solvable in polynomial time for partition matroids, it is NP-hard when considering the intersection of two partition matroids. Our proof shows, in particular, that the maximum vertex cover problem is NP-hard on bipartite graphs, which answers an open problem of B. Simeone.

Citations (28)

Summary

We haven't generated a summary for this paper yet.