Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete-Time Poles and Dynamics of Discontinuous Mode Boost and Buck Converters Under Various Control Schemes (1211.4415v1)

Published 19 Nov 2012 in cs.SY, math.DS, and nlin.CD

Abstract: Nonlinear systems, such as switching DC-DC boost or buck converters, have rich dynamics. A simple one-dimensional discrete-time model is used to analyze the boost or buck converter in discontinuous conduction mode. Seven different control schemes (open-loop power stage, voltage mode control, current mode control, constant power load, constant current load, constant-on-time control, and boundary conduction mode) are analyzed systematically. The linearized dynamics is obtained simply by taking partial derivatives with respect to dynamic variables. In the discrete-time model, there is only a single pole and no zero. The single closed-loop pole is a linear combination of three terms: the open-loop pole, a term due to the control scheme, and a term due to the non-resistive load. Even with a single pole, the phase response of the discrete-time model can go beyond -90 degrees as in the two-pole average models. In the boost converter with a resistive load under current mode control, adding the compensating ramp has no effect on the pole location. Increasing the ramp slope decreases the DC gain of control-to-output transfer function and increases the audio-susceptibility. Similar analysis is applied to the buck converter with a non-resistive load or variable switching frequency. The derived dynamics agrees closely with the exact switching model and the past research results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.