Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A review of some recent work on hypercyclicity (1211.4390v1)

Published 19 Nov 2012 in math.FA

Abstract: Even linear operators on infinite-dimensional spaces can display interesting dynamical properties and yield important links among functional analysis, differential and global geometry and dynamical systems, with a wide range of applications. In particular, hypercyclicity is an essentially infinite-dimensional property, when iterations of the operator generate a dense subspace. A Frechet space admits a hypercyclic operator if and only if it is separable and infinite-dimensional. However, by considering the semigroups generated by multiples of operators, it is possible to obtain hypercyclic behaviour on finite dimensional spaces. This article gives a brief review of some recent work on hypercyclicity of operators on Banach, Hilbert and Frechet spaces.

Summary

We haven't generated a summary for this paper yet.