Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact Recovery of Sparse Signals via Orthogonal Matching Pursuit: How Many Iterations Do We Need? (1211.4293v5)

Published 19 Nov 2012 in cs.IT and math.IT

Abstract: Orthogonal matching pursuit (OMP) is a greedy algorithm widely used for the recovery of sparse signals from compressed measurements. In this paper, we analyze the number of iterations required for the OMP algorithm to perform exact recovery of sparse signals. Our analysis shows that OMP can accurately recover all $K$-sparse signals within $\lceil 2.8 K \rceil$ iterations when the measurement matrix satisfies a restricted isometry property (RIP). Our result improves upon the recent result of Zhang and also bridges the gap between Zhang's result and the fundamental limit of OMP at which exact recovery of $K$-sparse signals cannot be uniformly guaranteed.

Citations (7)

Summary

We haven't generated a summary for this paper yet.