2000 character limit reached
Subgeometric rates of convergence of Markov processes in the Wasserstein metric (1211.4273v3)
Published 18 Nov 2012 in math.PR
Abstract: We establish subgeometric bounds on convergence rate of general Markov processes in the Wasserstein metric. In the discrete time setting we prove that the Lyapunov drift condition and the existence of a "good" $d$-small set imply subgeometric convergence to the invariant measure. In the continuous time setting we obtain the same convergence rate provided that there exists a "good" $d$-small set and the Douc-Fort-Guillin supermartingale condition holds. As an application of our results, we prove that the Veretennikov-Khasminskii condition is sufficient for subexponential convergence of strong solutions of stochastic delay differential equations.