2000 character limit reached
Short proofs of coloring theorems on planar graphs (1211.3981v1)
Published 16 Nov 2012 in math.CO and cs.DM
Abstract: A recent lower bound on the number of edges in a k-critical n-vertex graph by Kostochka and Yancey yields a half-page proof of the celebrated Gr\"otzsch Theorem that every planar triangle-free graph is 3-colorable. In this paper we use the same bound to give short proofs of other known theorems on 3-coloring of planar graphs, among whose is the Gr\"unbaum-Aksenov Theorem that every planar with at most three triangles is 3-colorable. We also prove the new result that every graph obtained from a triangle-free planar graph by adding a vertex of degree at most four is 3-colorable.