Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Pinsker inequalities via Stein's discrete density approach (1211.3668v2)

Published 15 Nov 2012 in math.PR, cs.IT, and math.IT

Abstract: Pinsker's inequality states that the relative entropy $d_{\mathrm{KL}}(X, Y)$ between two random variables $X$ and $Y$ dominates the square of the total variation distance $d_{\mathrm{TV}}(X,Y)$ between $X$ and $Y$. In this paper we introduce generalized Fisher information distances $\mathcal{J}(X, Y)$ between discrete distributions $X$ and $Y$ and prove that these also dominate the square of the total variation distance. To this end we introduce a general discrete Stein operator for which we prove a useful covariance identity. We illustrate our approach with several examples. Whenever competitor inequalities are available in the literature, the constants in ours are at least as good, and, in several cases, better.

Citations (34)

Summary

We haven't generated a summary for this paper yet.