Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smoothed Analysis of Belief Propagation for Minimum-Cost Flow and Matching (1211.3299v1)

Published 14 Nov 2012 in cs.DS

Abstract: Belief propagation (BP) is a message-passing heuristic for statistical inference in graphical models such as Bayesian networks and Markov random fields. BP is used to compute marginal distributions or maximum likelihood assignments and has applications in many areas, including machine learning, image processing, and computer vision. However, the theoretical understanding of the performance of BP is unsatisfactory. Recently, BP has been applied to combinatorial optimization problems. It has been proved that BP can be used to compute maximum-weight matchings and minimum-cost flows for instances with a unique optimum. The number of iterations needed for this is pseudo-polynomial and hence BP is not efficient in general. We study belief propagation in the framework of smoothed analysis and prove that with high probability the number of iterations needed to compute maximum-weight matchings and minimum-cost flows is bounded by a polynomial if the weights/costs of the edges are randomly perturbed. To prove our upper bounds, we use an isolation lemma by Beier and V\"{o}cking (SIAM J. Comput. 2006) for matching and generalize an isolation lemma for min-cost flow by Gamarnik, Shah, and Wei (Operations Research, 2012). We also prove almost matching lower tail bounds for the number of iterations that BP needs to converge.

Citations (12)

Summary

We haven't generated a summary for this paper yet.