Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computational topology and normal surfaces: Theoretical and experimental complexity bounds (1211.3234v1)

Published 14 Nov 2012 in math.GT, cs.CG, and math.CO

Abstract: In three-dimensional computational topology, the theory of normal surfaces is a tool of great theoretical and practical significance. Although this theory typically leads to exponential time algorithms, very little is known about how these algorithms perform in "typical" scenarios, or how far the best known theoretical bounds are from the real worst-case scenarios. Here we study the combinatorial and algebraic complexity of normal surfaces from both the theoretical and experimental viewpoints. Theoretically, we obtain new exponential lower bounds on the worst-case complexities in a variety of settings that are important for practical computation. Experimentally, we study the worst-case and average-case complexities over a comprehensive body of roughly three billion input triangulations. Many of our lower bounds are the first known exponential lower bounds in these settings, and experimental evidence suggests that many of our theoretical lower bounds on worst-case growth rates may indeed be asymptotically tight.

Citations (8)

Summary

We haven't generated a summary for this paper yet.