Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient density estimation in arbitrary finite dimensions using the method of stationary phase (1211.3038v4)

Published 13 Nov 2012 in stat.ML

Abstract: We prove that the density function of the gradient of a sufficiently smooth function $S : \Omega \subset \mathbb{R}d \rightarrow \mathbb{R}$, obtained via a random variable transformation of a uniformly distributed random variable, is increasingly closely approximated by the normalized power spectrum of $\phi=\exp\left(\frac{iS}{\tau}\right)$ as the free parameter $\tau \rightarrow 0$. The result is shown using the stationary phase approximation and standard integration techniques and requires proper ordering of limits. We highlight a relationship with the well-known characteristic function approach to density estimation, and detail why our result is distinct from this approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.