Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A SVD accelerated kernel-independent fast multipole method and its application to BEM (1211.2517v2)

Published 12 Nov 2012 in cs.NA and math.NA

Abstract: The kernel-independent fast multipole method (KIFMM) proposed in [1] is of almost linear complexity. In the original KIFMM the time-consuming M2L translations are accelerated by FFT. However, when more equivalent points are used to achieve higher accuracy, the efficiency of the FFT approach tends to be lower because more auxiliary volume grid points have to be added. In this paper, all the translations of the KIFMM are accelerated by using the singular value decomposition (SVD) based on the low-rank property of the translating matrices. The acceleration of M2L is realized by first transforming the associated translating matrices into more compact form, and then using low-rank approximations. By using the transform matrices for M2L, the orders of the translating matrices in upward and downward passes are also reduced. The improved KIFMM is then applied to accelerate BEM. The performance of the proposed algorithms are demonstrated by three examples. Numerical results show that, compared with the original KIFMM, the present method can reduce about 40% of the iterating time and 25% of the memory requirement.

Citations (8)

Summary

We haven't generated a summary for this paper yet.