Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial Optimization with Real Varieties (1211.1940v2)

Published 8 Nov 2012 in math.OC

Abstract: We consider the optimization problem of minimizing a polynomial f(x) subject to polynomial constraints h(x)=0, g(x)>=0. Lasserre's hierarchy is a sequence of sum of squares relaxations for finding the global minimum. Let K be the feasible set. We prove the following results: i) If the real variety V_R(h) is finite, then Lasserre's hierarchy has finite convergence, no matter the complex variety V_C(h) is finite or not. This solves an open question in Laurent's survey. ii) If K and V_R(h) have the same vanishing ideal, then the finite convergence of Lasserre's hierarchy is independent of the choice of defining polynomials for the real variety V_R(h). iii) When K is finite, a refined version of Lasserre's hierarchy (using the preordering of g) has finite convergence.

Summary

We haven't generated a summary for this paper yet.