Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shattering, Graph Orientations, and Connectivity (1211.1319v1)

Published 6 Nov 2012 in cs.DS, cs.DM, and math.CO

Abstract: We present a connection between two seemingly disparate fields: VC-theory and graph theory. This connection yields natural correspondences between fundamental concepts in VC-theory, such as shattering and VC-dimension, and well-studied concepts of graph theory related to connectivity, combinatorial optimization, forbidden subgraphs, and others. In one direction, we use this connection to derive results in graph theory. Our main tool is a generalization of the Sauer-Shelah Lemma. Using this tool we obtain a series of inequalities and equalities related to properties of orientations of a graph. Some of these results appear to be new, for others we give new and simple proofs. In the other direction, we present new illustrative examples of shattering-extremal systems - a class of set-systems in VC-theory whose understanding is considered by some authors to be incomplete. These examples are derived from properties of orientations related to distances and flows in networks.

Citations (16)

Summary

We haven't generated a summary for this paper yet.