Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-Order Discontinuous Galerkin Methods by GPU Metaprogramming (1211.0582v1)

Published 2 Nov 2012 in cs.MS and math.NA

Abstract: Discontinuous Galerkin (DG) methods for the numerical solution of partial differential equations have enjoyed considerable success because they are both flexible and robust: They allow arbitrary unstructured geometries and easy control of accuracy without compromising simulation stability. In a recent publication, we have shown that DG methods also adapt readily to execution on modern, massively parallel graphics processors (GPUs). A number of qualities of the method contribute to this suitability, reaching from locality of reference, through regularity of access patterns, to high arithmetic intensity. In this article, we illuminate a few of the more practical aspects of bringing DG onto a GPU, including the use of a Python-based metaprogramming infrastructure that was created specifically to support DG, but has found many uses across all disciplines of computational science.

Citations (20)

Summary

We haven't generated a summary for this paper yet.