Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iterative Hard Thresholding Methods for $l_0$ Regularized Convex Cone Programming (1211.0056v2)

Published 31 Oct 2012 in math.OC, cs.LG, math.NA, stat.CO, and stat.ML

Abstract: In this paper we consider $l_0$ regularized convex cone programming problems. In particular, we first propose an iterative hard thresholding (IHT) method and its variant for solving $l_0$ regularized box constrained convex programming. We show that the sequence generated by these methods converges to a local minimizer. Also, we establish the iteration complexity of the IHT method for finding an $\epsilon$-local-optimal solution. We then propose a method for solving $l_0$ regularized convex cone programming by applying the IHT method to its quadratic penalty relaxation and establish its iteration complexity for finding an $\epsilon$-approximate local minimizer. Finally, we propose a variant of this method in which the associated penalty parameter is dynamically updated, and show that every accumulation point is a local minimizer of the problem.

Citations (88)

Summary

We haven't generated a summary for this paper yet.